Genetics, environment, and their interaction determine efficacy of chemical defense in trembling aspen.

نویسندگان

  • Jack R Donaldson
  • Richard L Lindroth
چکیده

Optimal defense theories suggest that a trade-off between defense costs and benefits maintains genetic variation within plant populations. This study assessed the independent and interactive effects of genetic- and environment-based variation in aspen leaf chemistry on insect performance, preference, and defoliation. Gypsy moth larvae were released into screenhouses containing eight aspen genotypes growing with high and low levels of nutrient availability. Plant chemistry, defoliation, and larval growth rates varied in response to genotype, nutrient availability, and their interaction. Total phenolic glycoside concentrations were inversely correlated with patterns of larval preference and were the best predictor of larval performance and defoliation among genotypes. Low-nutrient trees were less heavily defoliated and afforded decreased larval growth rates compared with high-nutrient trees. Nutrient availability mediated the defense benefits of phenolic glycosides, as plant chemistry explained significantly less variation in defoliation in low- compared with high-nutrient trees (7% vs. 44% of variation explained). These results suggest that spatial and temporal variation in resource availability may influence the relative magnitude of defense benefits in plants. Environmental mediation of the defense costs and benefits likely leads to diversifying selection and may maintain genetic polymorphisms in chemical defense traits in plant populations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Polyphenol oxidase and herbivore defense in trembling aspen (Populus tremuloides): cDNA cloning, expression, and potential substrates.

The biochemical anti-herbivore defense of trembling aspen (Populus tremuloides Michx.) was investigated in a molecular analysis of polyphenol oxidase (PPO; EC 1.10.3.2). A PPO cDNA was isolated from a trembling aspen wounded leaf cDNA library and its nucleotide sequence determined. Southern analysis indicated the presence of two PPO genes in the trembling aspen genome. Expression of PPO was fou...

متن کامل

Climatic Sensitivity of a Mixed Forest Association of White Spruce and Trembling Aspen at Their Southern Range Limit

Climatic sensitivity of white spruce (Picea glauca (Moench) Voss) was examined growing in association with trembling aspen (Populus tremuloides Michx.) at their southern limit of distribution in a transitional ecotone between the southern boreal forest and northern prairie region. The study was carried out in the Spruce Woods Provincial Park (SWPP) located in southwestern Manitoba, Canada. The ...

متن کامل

Competition- and resource-mediated tradeoffs between growth and defensive chemistry in trembling aspen (Populus tremuloides).

Costs of defense are thought to maintain genetic variations in the expression of defense within plant populations. As with many plant species, aspen exhibits considerable variation in allocation to secondary metabolites. This study examined the independent and interactive effects of genotype, soil fertility and belowground competition on defensive chemistry and growth in trembling aspen (Populu...

متن کامل

Tri-trophic effects of plant defenses: chickadees consume caterpillars based on host leaf chemistry

Few studies have addressed how plant chemical defenses that directly affect herbivores in turn affect consumption patterns of vertebrates at higher trophic levels. We studied how variable foliar chemistry of trembling aspen (Populus tremuloides Michx.) affects the diet preferences of an avian insectivore feeding on an introduced herbivore, the gypsy moth (Lymantria dispar L.). Black-capped chic...

متن کامل

Herbivore-simulated induction of defenses in clonal networks of trembling aspen (Populus tremuloides).

Trembling aspen (Populus tremuloides Michx.) as a clonal tree species possesses a complex root system through which trees of the same or different clones are connected. Root connections have been studied with respect to resource sharing, but the nature, quantities or extent of what is shared between trees is relatively unknown. In this study, we posed the hypothesis that systemic defense induct...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Ecology

دوره 88 3  شماره 

صفحات  -

تاریخ انتشار 2007